• Quote of the Day
    "You are much deeper, much broader, much brighter than any idea you could have of yourself."
    Harry Palmer, posted by Daniel

David Baxter

Mar 26, 2004
Flu during Pregnancy link with Schizophrenia, Autism Confirmed
October 17, 2007

As we've reported in the past, the flu and other maternal infections (for example sexually transmitted diseases) during pregnancy significantly increase the risk of schizophrenia in the child later in life. Today a new research study came out that confirms this link, and also extends the maternal infections as a casual factor in autism. We aren't surprised by this as maternal stress during pregnancy is another factor that has been linked to increased risk of schizophrenia and autism in children. Its important to note that these are only some of the known factors that increase the risk of schizophrenia; see our Schizophrenia Causes section for full details.

What is perhaps most interesting about this new study is that the researchers are now looking at ways to stop the brain damage that occurs due to the flu (or more specifically the body's immune response to the flu). There may be protective medications that can be developed that help protect a baby's brain from these assaults - thus leading towards more preventative approaches to schizophrenia. This is exciting research and we hope much more money gets invested in this direction.

To provide a bit of background to this new research paper, it has been known for many decades that schizophrenia is more common among people born in the winter and spring months, as well as in people born following influenza epidemics. Recent studies suggest that if a woman suffers even one respiratory infection during her second trimester, her offspring's risk of schizophrenia rises by three to seven times.

Since schizophrenia and autism have a strong genetic component, there is no absolute certainty that infection will cause the disorders in a given case, but it is believed that as many as 21 percent of known cases of schizophrenia may have been triggered in this way. The conclusion is that susceptibility to these disorders is increased by something that occurs to mother or fetus during a bout with the flu.

Now, researchers have isolated a protein that plays a pivotal role in that dire chain of events. A paper containing their results, Maternal immune activation alters fetal brain development through interleukin-6, will be published in the Oct. 3 issue of the Journal of Neuroscience.

Surprisingly, the finger of blame does not point at the virus itself. Since influenza infection is generally restricted to the mother's respiratory tract, the team speculated that what acts as the mediator is not the mother's infection per se but something in her immune response to it.

To prove this, they triggered an artificial immune response in pregnant mice--giving them a faux case of the flu. The trigger they used was a snippet of double-stranded RNA called poly(I:C), which fools the immune system into thinking there has been an infection by an RNA virus.

A single, mid-gestation injection of poly(I:C) creates a strong immune response in a pregnant mouse. When her offspring reach adulthood, they display behavioral and tissue abnormalities similar to those seen in schizophrenia in humans.

Though there might be some disagreement over what it means for a mouse to be schizophrenic, these abnormalities are generally marked by inappropriateness of response and difficulty in coping. For instance, afflicted mice often show antisocial tendencies, have trouble internalizing basic cause-and-effect connections, and are anxious about entering wide-open spaces or interacting with novel objects. Moreover, some of these abnormal behaviors are corrected by antipsychotic drug treatment.

These behaviors then pose a new question, what in the mother's immune response caused the abnormalities?

At the cellular level, the innate immune response is driven by proteins called cytokines, which are produced by the body in response to infection. The researchers speculated that something was being transmitted to the fetus by one or more cytokines produced by the mother in response to her infection.

"It's known that humans that are treated--say, for cancer--with an experimental cytokine treatment can display very significant changes in behavior," says Paul H. Patterson, Biaggini Professor of Biological Sciences and senior author of the paper. "So we know cytokines can have dramatic effects, of the kind you see in schizophrenia."

The team tried injecting the pregnant mice with individual cytokines, rather than with poly(I:C). It turned out that after a single dose of a specific cytokine known as interleukin-6 (or IL-6), a mouse would give birth to offspring who, at maturity, exhibited the familiar schizophrenia- and autism-like behaviors.

To confirm the role of IL-6, Steve Smith, the lead researcher, gave fake colds to two groups of pregnant, IL-6-free mice. One group had received anti-IL-6 antibodies which blocked IL-6; the other consisted of so-called IL-6 knockout mice (mice whose genetic makeup prevents them from synthesizing IL-6). In both groups, offspring grew up normal, showing that IL-6 is necessary for the maternal flu treatment to alter fetal brain development and subsequent behavior in the offspring.

The decision to try injecting IL-6 was a long shot. "It is really unexpected that a single injection of a single cytokine would exert such a powerful effect," says Patterson.

The scientists are still unsure what it is about increasing IL-6 levels in the mother that causes undesirable effects in her offspring. "The most obvious possibility is that IL-6 acts directly on the fetal brain," the paper's authors say, but they acknowledge that the cytokine might also alter the transfer of materials across the placenta or might even alter the maternal immune system that gave rise to it, in effect triggering a low-grade rejection of the developing fetal tissue by the mother's body.

Once the exact role of IL-6 has been nailed down, there will still be more work to be done. The researchers are hunting for ways of preventing cytokines like IL-6 from inflicting their damage on the developing or maturing brain--perhaps via mechanisms involving other cytokines.

"We could certainly imagine that there would be anti-inflammatory cytokines that would be involved, that would be acting in the opposite direction," suggests Patterson. "We haven't tested those yet, but we would like to. We also want to test anti-inflammatory drugs in the postnatal offspring to see if we can normalize their behavior."

Top Bottom